Synthesis of Prostaglandin and Phytoprostane B_{1} Via Regioselective Intermolecular Pauson-Khand Reactions ${ }^{\dagger}$

Ana Vázquez-Romero, Lydia Cárdenas, Emma Blasi, Xavier Verdaguer,* and Antoni Riera*
Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB Barcelona) and Departament de Química Orgànica, Universitat de Barcelona, Parc Científic de Barcelona cl Baldiri Reixac 10, 08028 Barcelona, Spain antoni.riera@irbbarcelona.org; xavier.verdaguer@irbabarcelona.org

Received June 2, 2009

A new approach to the synthesis of prostaglandin and phytoprostanes B_{1} is described. The key step is an intermolecular Pauson-Khand reaction between a silyl-protected propargyl acetylene and ethylene. This reaction, promoted by NMO in the presence of $4 \AA$ molecular sieves, afforded the 3 -tert-butyldimethylsilyloxymethyl-2-substituted-cyclopent-2-en-1-ones (III) in good yield and with complete regioselectivity. Deprotection of the silyl ether, followed by Swern oxidation, gave 3 -formyl-2-substituted-cyclopent-2-en-1-ones (II). Julia olefination of the aldehydes II with the suitable chiral sulfone enabled preparation of PPB_{1} type I and PGB_{1}.

Prostaglandins are hormone-like compounds found in virtually all tissues and organs. ${ }^{1}$ Mammalian prostaglandins and their isomers, isoprostanes, ${ }^{2}$ have a 20 -carbon skeleton, as they derive metabolically from arachidonic acid. All compounds feature a five-membered hydrocarbon ring of various oxidative degrees as well as two side chains of different lengths and functionalization. Prostaglandins perform a myriad of biological activities and are implicated in many diseases. ${ }^{3}$ Some naturally occurring prostaglandins, such as

[^0]prostaglandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right.$, dinoprostone $)$, and several synthetic analogues are important drugs. ${ }^{4}$ Prostaglandin $\mathrm{B}_{1}\left(\mathrm{PGB}_{1}\right)$, which contains a cyclopentenone ring and whose two side chains are attached directly to the double bond of this ring, is formed by nonenzymatic dehydration of $\mathrm{PGE}_{1} . \mathrm{PGB}_{1}$ has shown remarkable affinity for peroxisome proliferatoractivated receptor $-\gamma$ (PPAR- γ), which is involved in fat deposition and metabolism, and its oligomers exhibit antioxidant and ionophoric activity. ${ }^{5}$ Phytoprostanes are botanical analogues of prostaglandins. ${ }^{6}$ In higher plants, the main polyunsaturated fatty acid is α-linolenic acid. Therefore, most

[^1]
[^0]: ${ }^{\dagger}$ Dedicated to Prof. Josep Font on the occasion of his 70th birthday.
 (1) (a) Prostaglandins, Leukotrienes and other Eicosanoids; Marks, F.; Fürstenberger, G., Eds.; Wiley-VCHG: Weinheim, 1999. (b) Rokach, J.; Khanapure, S. P.; Hwang, S.-W.; Adiyaman, M.; Lawson, J. A.; FitzGerald, G. A. Prostaglandins 1997, 54, 823.
 (2) (a) Roberts, L. J.; Milne, G. L. J. Lipid Res. 2009, S219. (b) Durand, T.; Cracowski, J.; Berdeaux, O. Pathol. Biol. 2005, 53, 349. (c) Rokach, J.; Kim, S.; Bellone, S.; Lawson, J. A.; Pratico, D.; Powell, W. S.; FitzGerald, G. A. Chem. Phys. Lipids 2004, 128, 35. (d) Milne, G.; Musiek, E.; Morrow, J. Biomarkers 2005, 10, S10.
 (3) (a) Jahn, U.; Galano, J.; Durand, T. Angew.Chem., Int.Ed. 2008, 47, 5894.

[^1]: (4) (a) Backlund, M. G.; Mann, J. R.; DuBois, R. N. Oncology 2005, 69, 28. (b) Cimino, P. J.; Keene, C. D.; Breyer, R. M.; Montine, K. S.; Montine, T. J. Curr. Med. Chem. 2008, 15, 1863. (c) Logan, C. M.; Giordano, A.; Puca, A.; Cassone, M. Cancer Biol. Ther. 2007, 6, 1517. (d) Sugimoto, Y.; Narumiya, S. J. Biol. Chem. 2007, 282, 11613.
 (5) (a) Franson, R. C.; Rosenthal, M. D. Biochim. Biophys. Acta, Lipids Lipid Metab. 1989, 1006, 272. (b) Uribe, S.; Villalobos-Molina, R.; Devlin, T. M. Biochem. Biophys. Res. Commun. 1987, 143, 1024. (c) DeTitta, G. T. Science 1976, 191, 1271.
 (6) Mueller, M. J. Curr. Opin. Plant Biol. 2004, 7, 441.

